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Wnt genes and components of Wnt signalling pathways 
have been implicated in a wide spectrum of important 
biological phenomena, ranging from early organismal 
development to cell behaviours to several diseases, espe 
cially cancers. Emergence of the field of Wnt signalling 
can be largely traced back to the discovery of the first 
mammalian Wnt gene in 1982. In this essay, we mark the 
thirtieth anniversary of that discovery by describing some 
of the critical scientific developments that led to the 
flowering of this field of research. 
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Introduction: how we learn about what we 
know 
Knowledge differs from the growth of knowledge. To learn 
the facts about a subject, such as Wnt genes or the Wnt 
signalling pathway, one can consult an encyclopaedia, a 
textbook, or a conventional review article. To understand 
how those facts were unearthed and assembled into coherent 
concepts, it is necessary to probe the history of a field-to 
learn about the sequence of events, the logical and illogical 
connections between those events, and the people who 
participated in them. 

We have approached this essay with more attention to 
historical development than to a full repertoire of facts. While 
interesting experimental results about Wnt genes and their 
effects on cells and organisms continue to appear at an 
accelerating pace, we believe that there is a great deal to 
learn about the scientific enterprise more broadly by looking 
back on the unusual way in which the knowledge about those 
genes has grown over the past three decades. Some under- 
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standing of Wnt signalling is now required of those who 
aspire to succeed in many prominent fields of biology- 
including organismal development, cancer research, and 
stem-cell biology. There is also a sizeable subset of biologists 
who define themselves primarily as students of Wnt genes, 
while also aligning themselves with cancer, developmental, 
or stem-cell biologists or with communities devoted to the 
fruit fly, worm, amphibians, mouse, or Homo sapiens. This 
cannot be said of those working on many other genes or 
signalling pathways, raising the interesting questions of how 
and why scientists organize themselves in unusual ways and 
view their subjects through certain kinds of lenses. 

We have composed this essay on the occasion of the 
thirtieth anniversary of the published report that announced 
our discovery of what proved to be the first mammalian Wnt 
gene (Nusse and Varmus, 1982). Taking that report as an 
arbitrary starting point in the history of this field, we have 
tried to highlight the most significant ways in which the field 
increased in knowledge, enlarged in scope, and grew in 
disciples. As we emphasize, some of these advances were 
logical and straightforward, others were technically difficult 
and protracted, and yet others were serendipitous and 
surprising. We also note more briefly how the shape of the 
field was determined by certain beneficial attitudes and 
behaviours that may be worthy of emulation. 

The 'pre-history': mouse models for breast 
cancer and cancer-causing retroviruses 
preceded knowledge of Wnt genes 
All modern science is built on earlier science. Accordingly, 
the discovery that launched the intense study of Wnt genes 
30 years ago depended on at least two earlier and closely 
related lines of enquiry: mouse models of cancer and 
oncogenic retroviruses. 

It had been known since the 1930s that certain strains of 
laboratory mice are highly susceptible to breast cancer, and 
that the disease is usually transmitted from mothers to off- 
spring mice through the milk (Bittner, 1936; Korteweg, 1936). 
Later, the tumour-inducing activity was purified from the milk 
(Lyons and Moore, 1962), and the milk-transmitted factor was 
shown to be a morphologically atypical retrovirus, called the 
Mouse Mammary 'hmour Virus or MMTV. 

Although the study of oncogenic retroviruses can be 
tracked to the first decade of the 20th century, the basis of 
their cancer-causing properties came into focus only in the 
century's second half. The first great advances came from 
tissue culture assays for viral growth and cell transforming 
capacities and from the biochemical and genetic analysis of 
the RNA genomes of retroviruses isolated from chickens, 
mice, rats, and other experimental animals. These methods 
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led to the discovery of distinct viral oncogenes, such as Src, 
Myc, and Ras, and their cellular precursors, called proto- 
-oncogenes, a term denoting any cellular genes that could be 
converted to active cancer-causing genes (Bishop and 
Varmus, 1985). Conversion to oncogenicity could occur by 
the mechanisms that produced highly oncogenic retroviruses 
or, as was shown in time and described later in this essay, 
by a variety of other mechanisms, most commonly somatic 
mutations of several types. 

The proto-oncogenes initially discovered by tracing viral 
oncogenes to their cellular origins were generally not related 
to each other, but they shared several properties. They had 
been conserved during evolution and were converted to 
cancer-causing genes by gain-of-function mutations-as 
first shown for retroviral oncogenes and later for activated 
cellular oncogenes found in human cancers. The rapid onset 
of cancer caused by many retroviruses reflected the ability of 
active viral oncogenes to transform many infected cells 
(Bishop and Varmus, 1985). 

Before RN came to UCSF in 1980 to work with HV, we had 
both been interested in breast cancer in the mouse and in the 
general properties of retroviruses isolated from animals. Such 
viruses often cause haematological cancers and sarcomas, 
relatively infrequent types of cancers in human beings; only 
rarely do they induce epithelial carcinomas, the most com- 
mon human cancers. So, we were curious about the mechan- 
ism by which MMTV might cause carcinoma of the breast. 
Unlike the most intensively studied cancer-causing retro- 
viruses, however, there was no readily identifiable oncogene 
in the viral genome. But, like other retroviruses, MMTV was 
known to insert a DNA copy of its RNA genome into the host 
cell genome during infection. Moreover, MMTV caused can- 
cer slowly, over the course of several months, unlike onco- 
gene-containing retroviruses, suggesting that viral infection 
alone, while required for tumour induction, was not sufficient 
to transform a host cell-a property that had also been 
recognized in the study of certain leukaemia-inducing 
retroviruses found in birds and mice (Teich et al. 1982). 

It was known, however, that tumours induced by such 
viruses were composed of cell clones defined by shared 
proviral integration sites (Cohen et al, 1979; Payne et al. 
1981) implying that tumours consisted of the descendants of 
a single infected cell and were thus the outcome of rare 
events. The pattern of clonality raised the possibility that one 
of many infected cells had randomly acquired a provirus that 
could initiate tumourigenesis. For instance, the insertion of 
viral DNA might cause a mutation of a gene in the vicinity of 
the integration site, and the change might confer a growth 
advantage to that cell. While it was possible that such 
mutations caused loss-of-function mutations, by disrupting 
a host cell gene, an alternative and more attractive model was 
that a host cell gene was transcriptionally activated by the 
incoming provirus. The latter model was inspired by findings 
in yeast and prokaryotes, where transposable elements, 
which are often functionally and structurally similar to 
retroviral proviruses (Brown and Varmus, 1989), were 
known to activate residing host cell genes (Errede et al, 
1980). 

The model of gene activation by proviral insertion gained 
momentum when Bill Hayward’s group showed that B-cell 
lymphomas caused by the slowly oncogenic Avian Leukosis 
Virus (ALV) commonly contained proviruses inserted near 

the c-myc gene and that c-myc was overexpressed in those 
tumours (Hayward et al, 1981). Initially, activation of c-myc 
appeared to be the consequence of a transcriptional promoter 
present in an ALV provirus inserted upstream of the protein- 
coding exons of c-myc in the same transcriptional orientation 
(Hayward et al, 1981). but research in HV’s group showed 
that proviruses could also enhance c-myc expression from the 
endogenous c-myc promoter when inserted downstream of 
the gene or upstream in either orientation (Payne er al, 1982). 

The discoveries concerning c-myc and ALV were of critical 
importance in cancer research, as it was the first time that a 
cellular homologue of a viral oncogene was shown to be 
activated in cancer by mutation. Soon thereafter, many kinds 
of mutations other than viral insertion mutations-gene 
amplifications, chromosomal translocations, and point 
mutations-were shown to activate c-myc and many other 
progenitors of retroviral oncogenes, in human as well as in 
animal turnours, without the intervention of retroviruses 
(Weinberg, 1983). The results with ALV and c-myc also set 
the stage for looking for a similar mechanism in tumours 
caused by other retroviruses, such as MMTV, with the 
prospect of finding proto-oncogenes that are not related to 
known viral oncogenes. 

Molecular cloning of intl, the first novel 
proto-oncogene identified by proviral 
tagging 
To seek host cell genes that are activated by insertions of 
MMTV proviruses, we decided to do a systematic screen 
rather than to look for activation of only those proto-onco- 
genes known at the time, such as c-myc. We assumed, 
perhaps naively, that only one or perhaps a few genes in 
the mouse genome would confer tumourigenic growth when 
activated by MMTV in mammary cancer. This assumption 
implied that by comparing MMTV proviruses in multiple 
different tumours we would find common integration sites, 
or at least common regions, near those unusual genes. This 
segment of the genome would represent a so-called ‘common 
integration site.’ But the commonality would not reflect a 
predisposition to integrate MMTV at preferred locations in the 
mouse genome-all data, then and now, suggest that retro- 
viral integration occurs quasi-randomly in host genomes- 
but instead would result from selection of cells that acquired 
a growth advantage when a provirus activated a nearby 
proto-oncogene. 

The goal then became to isolate an integrated MMTV 
provirus plus its adjacent host cell DNA from a tumour by 
molecular cloning. We reasoned that we should start from a 
tumour with just one MMTV insertion. Most tumours in the 
strain we were using (C3H) carried multiple newly acquired 
proviruses, in addition to a few copies of inherited ‘endogen- 
ous’ MMTV DNA that were invariant among the arising 
tumours because they were products of ancient infections 
of the mouse germ line (Bentvelzen et al. 1970; Cohen and 
Varmus. 1979). Since it was difficult to know which of the 
multiple new proviruses would be functionally important, we 
looked for tumours carrying only one new provirus; this 
single insert should, according to the model, be near the 
relevant gene. Restriction fragments of host DNA derived 
from the vicinity of the provirus from that tumour would 
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Figure 1 A working map of the mouse intl locus as drawn by RN and used from 1982 to 1984. with the position of various cloned genomic 
restriction fragments. Red lines indicate the presence of intl exons, mapped in 1984. Note the location of Probe C. a genomic fragment 
hybridizing with intl mRNA in mouse mammary tumours. At the bottom, the position of MMTV proviruses mapped in different tumoun, with 
the position of the provirus in tumour X l 8 .  the starting point of the cloning of the locus. indicated at the right hand end. 

then be used as probes for two purposes: to screen other for MMTV DNA insertions in the region occupied by the 
tumours for integrations in the same domain and to measure single provirus in tumour X18; these were manifested by 
transcription of local genes, both in tumours and in normal novel restriction fragments that hybridized with both 
mammary tissue. Of course, today, with complete sequences MMTV and host cell probes. We assembled a map of the 
of normal mouse genomes and powerful methods for relevant region of the mouse genome, with the various 
sequencing tumour DNA in hand, precise mapping of proviral insertions in different tumours scattered throughout 
insertion sites has become a relatively simple exercise. a region spanning B 30KB (Figure 1). It turned out that the 
But at the time, these tools were not available, so a more original insertion site we cloned from tumour X18 was at one 
cumbersome method was required. end of the cluster. 

We initiated the screen in October 1980, gathering over 30 But where was the cellular gene that, according to our 
MMTV-infected C3H mice with mammary tumours. and we hypothesis, should have been activated as a result of these 
found just one tumour (X18) with a single new provirus. integrations? One of the probes (probe C. Figure 1) proved to 
Happily, that single tumour proved to suffice for our pur- be particularly helpful. It picked up integration events in 
poses. From the genome of this tumour, we cloned a ‘junc- many individual tumours and mapped approximately to the 
tional’ fragment, containing a part of an MMTV provirus middle of the cluster of integrations. More importantly, the 
joined to adjacent chromosomal DNA, then derived smaller same probe also detected a tumour-specific mRNA-that is, a 
fragments containing only host cell DNA. With those frag- species not found in normal mammary gland tissue-on 
ments as probes, we ‘walked’ along the chromosome in either northern blots. This was the evidence we were looking 
direction from the original proviral insertion site to obtain for-a host gene, a putative proto-oncogene, had been tran- 
more probes for a broader region of the mouse genome scriptionally activated by MMTV proviruses in multiple, 
(Figure 1). These were then used to examine DNA from independent tumours (Nusse and Varmus, 1982). We called 
other tumours for disruptions caused by MMTV proviruses. the gene intl (to denote the first common integration site) 
Indeed, many tumours in our collection had evidence and promptly submitted a manuscript that was published in 
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the journal Cell in November 1982 (Nusse and Varmus. 
1982). The method we used, called proviral tagging, is now 
.widely used to discover proto-oncogenes in cancers induced 
in mice by retroviruses or transposable elements and in 
cancers whose growth is accelerated in transgenic animals 
by these elements (Kool and Berns, 2009; Copeland and 
Jenkins, 2010). 

The paper describing intl was well received, but its impact 
at that time was overshadowed by an avalanche of incredibly 
exciting developments in cancer research. In the same year, 
1982, human cancers were found to have mutations in 
cellular RAS genes, and other human tumours were shown 
to contain chromosome translocations directly affecting 
c-myc (Bishop, 1983). Soon thereafter, equally explosive 
findings were announced, identifying oncogenic proteins as 
known factors governing growth control: the erbB oncogene 
was discovered to be derived from the EGF receptor gene, and 
both encoded protein-tyrosine kinases; and the precursor to 
the v-sis oncogene was shown to be the gene encoding PDGF, 
a secreted growth factor (Bishop and Varmus, 1985). 

The difficulties of defining the mechanism 
of action of the intl gene and its encoded 
protein 
In the midst of all of the excitement about retroviral onco- 
genes and their progenitors, intl attracted relatively little 
attention beyond the confines of our laboratories, despite 
the many open questions that seemed important and inter- 
esting to us. Initially, in the absence of a nucleotide sequence, 
we had no clue how the gene would function. Work done in 
both our laboratories (HV at UCSF; and RN after his return to 
the Netherlands Cancer Institute in Amsterdam in 1982) 
elucidated the structure and sequence of the intl gene (van 
Ooyen and Nusse, 1984) and its cDNA (Fung et al. 1985), 
revealing no homology with any other gene or protein known 
at the time. We did notice, however, that the predicted protein 
sequence started with a signal sequence, indicating that the 
intl protein would be secreted. This opened up the exciting 
possibility that this protein might be an extracellular growth 
factor. But direct proof of this prediction turned out to be very 
hard to obtain. For many years, no one was able to produce or 
isolate significant quantities of the intl protein, a problem 
that was not solved until 2003 (see below). To make matters 
worse, generating useful antibodies to intl was an equally 
frustrating enterprise; in fact, detecting intl protein in cells or 
tissues remains an elusive goal even today. These problems, 
in particular the lack of active protein for experimental use, 
precluded conventional signalling assays in cell culture. As a 
result, indirect assays, such as those dependent on gene 
transfer, had to be used to study signalling events in cells 
expressing intl. In particular, the identification of specific 
intl cell surface receptors by binding assays was not possible 
until much later. 

On the other hand, we did establish that expression of the 
intl gene could affect cell behaviour in a fashion that 
resembled conventional transformation and provided a bio- 
logical assay: various mammary epithelial cell lines could be 
morphologically altered by overexpression of intl, albeit in a 
subtle way and rarely leading to formation of cells capable of 
growing into a tumour (Brown et al. 1986; Rijsewijk et al. 

1987b). More dramatically, Ann "bukamoto in HV's 
laboratory was able to recapitulate the oncogenic effect of 
intl in mice without resorting to virus infection: mice 
expressing an intl transgene under the influence of an 
MMTV transcriptional regulator developed cancer in the 
mammary gland within about 6 months of age mukamoto 
et al. 1988). This established that intl is a born fide 
proto-oncogene. These mice-and several others expressing 
intl under the control of inducible promoters-have since 
become widely used mouse models for studying breast 
carcinogenesis and for finding genes that can cooperate 
with the intl transgene during oncogenesis (MacArthur 
et al. 1995). 

Developmental genetics helped to reveal 
the function of intl when the gene was 
discovered to be the homologue of the 
Drosophila segment polarity gene, 
Wing less 
How could the function of intl protein and the components of 
its signalling pathway be deciphered without a direct, con- 
venient biochemical or cell-based assay? Fortunately, intl did 
have one advantage: a high degree of conservation across 
species. The human intl protein sequence turned out to be 
almost completely (99%) identical to that of the mouse 
homologue (Van Ooyen et al, 1985). Moreover, intl-related 
sequences appeared to be present in the DNA of Drosophila 
melanogaster as judged from molecular hybridization (Nusse 
et al, 1984). 

At the time, the new molecular methods that were respon- 
sible for unveiling the genes central to cancer research had 
also re-energized efforts to understand embryogenesis, using 
the rich treasury of Drosophila developmental mutants. 
During the 1970% genetic screens in Drosophila had unveiled 
a set of genes that were essential for the development of the 
embryo. Nusslein-Volhard and Wieschaus (1980) showed 
specific patterning defects, ranging from abnormal segment 
numbers to polarity changes, in mutants for many of these 
genes. They coined the term 'segment polarity genes' for one 
class of mutants that shared a similar patterning phenotype 
during embryogenesis. One of the genes in this group was 
called Wingless; others, Armadillo and Arrow. The Wingless 
gene had actually been identified earlier as a weak mutant 
allele leading to loss of wing tissue, hence the name Wingless 
(Sharma and Chopra, 1976). Subsequent to the genetic 
screens, many of the segmentation genes were molecularly 
cloned, generating a treasure trove of reagents to study 
developmental mechanisms. For example, the expression 
patterns of these genes often produced stripes 
corresponding to body segments. By examining the 
expression pattern of one gene in the background of 
mutations in other genes, hierarchies of genetic interactions 
were uncovered, providing unparalleled insights into how 
embryos develop (Ingham, 1988). 
RN and his colleagues cloned the Drosophila intl homo- 

logue and used polytene chromosome mapping (the geno- 
mic~  technology at the time) to locate the gene. It turned out 
to map close to Wingless, one of the segment polarity genes; 
a striped expression pattern observed with a Drosophila intl 
probe also suggested a role in segmentation (Rijsewijk et al, 
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Figure 2 Wnt signalling components as known in 1995 and 2000. 

1987a). Around the same time, Baker (1987) had cloned the 
Wingless gene by a P-element transposon tagging, a method 
akin to the proviral tagging methods we had used for intl. 
The gene he cloned had restriction maps matching our 
Drosophila intl clone. The genes were identical; the intl 
homologue in Drosophila was Wingless, one of the first 
examples of a gene involved in development and also 
activated in cancer (Rijsewijk et al, 1987a). This was an 
exciting discovery in its own right. In addition, the 
membership of Wingless in the segment polarity group 
promised to open doors to discovering the mechanisms of 
action of intl/Wingless, since it seemed likely that other 
genes in the group would interact with intl/Wingless 
genetically and biochemically. As we now understand, the 
core of its signalling pathway is indeed based on genetic 
relationships between segment polarity genes, with a key role 
for Armadillo (see below) (Figure 2). 

It had long been argued by some that cancer can be 
considered akin to a developmental abnormality, a disease 
caused by cells that have escaped from the normal develop- 
mental constraints on proliferation and differentiation 
(Boveri, 2008). Implicated in cancer as well as in 
embryogenesis, intl became a poster child for these 
connections. Interest in the roles of intl in development 
was further strengthened by reports by McMahon and 
Moon (1989) showing that intl was implicated in 
embryonic axis formation in another animal. Xenopus 
iaevis. Xenopus had been used classically to study 
morphological changes in development; more recently, 
injection methods had been used to perturb development 
by introduction of wild-type and mutant genes and proteins 
into early stage Xenopus embryos. McMahon and Moon 
(1989) found that ectopic expression of intl duplicated the 
dorsal axis, suggesting a role for intl as an organizer and an 
embryonic ‘inducer’, a signal between germ layers that would 
lead to pattern formation. Because of the speed and clarity of 
the embryological assays, Xenopus embryology became a 
mainstay of research on intl and other developmental 
signals. 

In other organisms, intl expression patterns in embryos 
and other tissues suggested a diversity of functions in the 
development of tissues. For instance, intl was initially found 
to be expressed mainly near the midbrain and cerebellum at 
the mid-stage of mouse development and in a specific stage of 
male germ cell maturation (Shackleford and Varmus, 1987; 
Wilkinson et al, 1987). 

lntl was one of the first genes to be 
knocked out by homologous gene targeting 
in mice, producing a developmental 
phenotype 
During the late 1980s. Mario Capecchi and Oliver Smithies 
developed the groundbreaking technique for generating gene- 
specific mouse mutants by homologous recombination. After 
learning about the highly restricted pattern of expression of 
intl. Capecchi’s group chose the gene as one of its initial 
targets for application of this amazing technology. After 
breeding to homozygosity, disruption of intl produced a 
dramatically diminished cerebellum, accompanied by severe 
ataxia (Thomas and Capecchi, 1990). In McMahon’s 
laboratory, intl null mutants caused an embryonic lethal 
phenotype in the mid-brain also affecting the development 
of the cerebellum (McMahon and Bradley, 1990). Soon 
thereafter, it was also shown that a classical mouse 
mutation, Swaying (Lane, 1967), was an allele of the infl 
gene; when intl was cloned from Swaying mice, it proved to 
have a frameshift mutation (Thomas et al, 1991). 

These several discoveries about intl mutant organisms in 
flies and mice were very striking. In a review article pub- 
lished in 1992 (Nusse and Varmus, 1992), we wrote: ‘With 
the benefit of hindsight, we now recognize that phenomena 
studied for several decades are the consequences of Wnt gene 
mutations. Viral insertion mutations regularly promote 
mammary tumours in laboratory mice (Bittner, 1936; 
Korteweg, 1936). a spontaneous frameshift mutation of 
mice (swaying) impairs cerebellar structure and function 
(Lane, 1967; Thomas et al. 1991) and wingless mutations in 
Drosophila can transform a wing to a notum or disrupt 
segment polarity (Sharma and Chopra. 1976; Niisslein- 
Volhard and Wieschaus, 1980)’. 

Renaming intl as Wntl and recognition of a 
Wnt gene family 
Around 1990, it became clear that the int nomenclature had 
become inadequate and confusing. For example, additional 
screens for MMTV proviral insertion sites in tumours had 
yielded other activated genes, called int2, int3. and int4 
(Dickson et al. 1984; Gallahan and Callahan. 1987; Roelink 
et af. 1990). But by sequence comparisons, these genes were 
not usually related to intl. One MMTV target gene, initially 
called int4. did prove to be related to intl (Roelink et al, 
1990). But the frequently activated inti? gene, first identified 
by Clive Dickson and Gordon Peters (Dickson et al, 1984). 
turned out to be a member of the FGF family (Dickson and 
Peters, 1987). Interestingly, FGF genes were also implicated 
in normal development at about this time, sometimes in 
coordination with intl-related genes, as in mesoderm 
formation (Kimelman et al, 1992). Moreover, intl and int2 
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are sometimes co-activated in MMTV-induced breast tumours 
(Peters et d. 1986). int3 was shown to be related to Notch, 
.another important developmental regulator (Gallahan and 
Callahan, 1997). 

At the same time that the int gene nomenclature was 
becoming unworkable, various experiments, including PCR- 
based homology screens, had revealed a large family of genes 
related to intl (Gavin et d. 1990). It would have been 
confusing to christen all these genes with the term ‘int’, 
whether or not they had been activated by proviral 
integration. To avoid further confusion, all those working 
on intl and its relatives, including Wingless, consented to a 
new hybrid name ‘Wnt’ (for Wingless-related integration 
site) to denote genes belonging to the intl/Wingless family, 
with intl. now called Wntl, as the founding member (Nusse 
et al. 1991). (In accord with other recognized relationships, 
int2 is now called FGF3. the int3 gene is Notch4, and int4 is 
Wnt3A.) 

The Wnt family as a vantage point to study 
gene evolution and development in 
metazoans 
With the complete sequences of the genomes of many multi- 
cellular animals in hand, we now realize that vertebrates 
contain a family of 19 Wnt-related genes; pairs of these genes 
can often be placed in subfamilies that are highly similar to 
each other, perhaps reflecting gene duplications relatively 
recently in evolution (Gavin et al. 1990). Each of these 
genes seems likely to have a specific role in development or 
other processes; they are generally expressed in different cells 
and at different times in maturation (Gavin et al, 1990). Many 
of the Wnt genes have now been deliberately mutated in the 
mouse, almost always leading to striking phenotypes, 
including limb polarity defects and sexual dimorphic 
abnormalities (Parr and McMahon, 1995, 1998). 

Even representatives of the earliest branches of the animal 
kingdom, such as Hydra and Nematostella, have the same 
number of Wnt subfamilies as vertebrates (Kusserow et al. 
2005). Readily recognized orthologues of specific Wnt 
genes-for example, Wntl-have been found throughout 
the entire animal kingdom, often expressed in tantalizing 
patterns (Kusserow et al. 2005). As a result, evolutionary 
biologists speculate that the early amplification and 
diversification of the Wnt family were at the roots of the 
increased complexity of animal body plans (Sidow, 1992; 
Holstein, 2012). It appears from such findings that Wnt genes 
were probably present in genomes prior to the split of the 
animal kingdom into protostomes and deuterostomes, are 
therefore at least 600 M years old, and may have a universal 
role in setting up the primary axis of animals (Petersen and 
Reddien, 2009; Niehrs, 2010; Holstein, 2012). However, it is 
also clear that single-cell organisms do not contain Wnt 
genes, nor do plants. 

In the midst of all of these genes and families, it remains 
striking that Wntl is one of the key Wnt family members and 
may have been the primordial one. Wntl is the true ortholo- 
gue of Wingless, a gene in Drosophila with numerous func- 
tions in later development as well as early embryogenesis. 
While there are six other Wnts in Drosophila, the others each 
play a minor role compared with Wingless. Moreover, there 

are very useful temperature-sensitive alleles of Wingless to 
study its numerous functions. As a result of these attributes, 
Wingless has been a rich source for understanding develop- 
mental processes. In other organisms that have multiple 
Wnts, Planaria in particular, the true Wntl orthologue also 
has a special place because of the requirement for it in 
regeneration (Gurley et d. 2010). While we do not 
understand why Wntl is the most frequently activated gene 
in MMTV-induced breast cancer, it should be noted that we 
now know that Wntl is closely linked to another Wnt gene 
that is often insertionally activated, WntlOB (Lee et d. 1995). 
Thus, some MMTV inserts may have activated both genes, 
providing a greater growth advantage. 

Unexpected findings reveal the importance 
of the Wnt pathway in human cancers 
From the time that Wntl was discovered as an initiating gene 
in mouse mammary carcinogenesis, it remained of great 
interest and importance to establish whether Wnt genes 
were involved in any human cancer. Early tests for aberrant 
expression of Wnt genes in human breast cancer gave ambig- 
uous results, at best, and no Wnt genes appeared to be 
mutated in any kinds of human tumours by DNA rearrange- 
ments or (as more recently documented by next generation 
sequencing of whole exomes or whole genomes) by point 
mutations (http://www.sanger.ac.uk/genetics/CGP/cosmic). 

But work from a different angle changed our perceptions 
about the role of Wnt genes in human cancer, demonstrating 
that downstream components of the Wnt signalling pathway, 
rather than the Wnt genes themselves at the upstream end of 
the pathway, were commonly altered in several types of 
human cancer. The first news came from the study of colon 
cancer, and it was dramatic. 

Around 1990. significant advances had been made in 
positional cloning of inherited human disease genes, includ- 
ing genes predisposing to several types of cancer. Among the 
hereditary forms of human cancer, adenomatous polyposis 
coli (APC), a trait associated with multiple polyps in the 
colon, often leads to colon cancer at a relatively early age. 
The corresponding mutations-often non-sense or frameshift 
mutations that produce truncated proteins-were found in an 
enormous gene called APC, which was cloned from human 
chromosome 5 in 1991 (Groden et d, 1991; Kinzler et al. 
1991). Identifying the human APCgene led to the cloning of a 
mouse homologue, subsequently shown by Bill Dove’s group 
to be mutated in a mouse strain called Min (Multiple 
intestinal neoplasia) (Su et al, 1993). Just as in human 
families, the cancer trait in the Min mouse is produced by 
an APC truncating mutation, inherited in an autosomal 
dominant manner. But despite the new genetic insights into 
intestinal cancer, the function of the large APC protein posed 
a biochemical mystery. 

Soon thereafter, the groups of Paul Polakis, Bert Vogelstein, 
and Ken Kinzler established that APC interacted in cells with 
a protein called b-catenin (Rubinfeld et d. 1993; Su et al, 
1993). At the time, bcatenin had just been characterized by 
Masatoshi Takeichi and Rolf Kemler as a protein binding to 
the cytoplasmic domain of the adhesion molecule E-cadherin 
(Ozawa et d. 1989; Takeichi. 1990). Intriguingly, Pierre 
McCrea and Barry Gumbiner had found that bcarenin gene 
was a vertebrate homologue of the segment polarity gene, 
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Armadillo (McCrea et al. 1991). while Peifer and Wieschaus 
(1990) had established similarity between Plakoglobin (a b 

. catenin-related adhesion complex member) and Armadillo. 
Together, these findugs suggested that APC and bcatenin/ 
Armadillo were involved in regulating adhesion between 
vertebrate cells. Given the role of Armadillo in segment 
polarity, a function shared with Wingless, a model 
emerged in which Wnt/Wingless signalling controlled cell 
adhesion in development (Peifer and Wieschaus, 1990; Peifer 
et al, 1993). and the same adhesion-based mechanism could 
control growth of cells in tissues and cause cancer when 
misregulated. 

While this was tantalizing, there were also reports that 
bcatenin/Armadillo was present in the nucleus, as well 
as at the cell membrane (Funayama et al, 1995). Other 
publications mentioned that injection of antibodies to 
bcatenin/Armadillo could induce dorsal axis duplication in 
Xenopus (McCrea et al. 1993). possibly by stabilizing the 
b-catenin/Armadillo protein; yet others claimed that 
depletion of maternal bcatenin/Armadillo could eliminate 
the dorsal axis (Heasman et al, 1994). These observations 
would ultimately all make sense: b-catenin is a key partici- 
pant of Wnt signalling, but the molecular mechanisms 
remained unexplained until a few years later. 

In deciphering the cascade of events between the Wnt 
signal and the role of b-catenin/Armadillo, the genetic inter- 
actions between a protein kinase called Glycogen Synthase 
Kinase 3 (GSK3) and other Wnt components proved to be 
of critical importance. Norbert Perrimon and colleagues 
showed that GSK3 (the Dmsophih homologue was called 
zeste-white 3, also known as shaggy) was a negative reg- 
ulator of the pathway; at the genetic level, Wnt/Wingless 
acted as a GSK3 inhibitor (Siegfried et al, 1992). Until then, 
GSK3 was known for its role in glucose metabolism (Dent 
et al, 1989), so its newly discovered role in developmental 
signalling was certainly surprising. 

A Wnt signalling cascade from the cell 
surface to the nucleus, an unusual pathway 
experimentally assembled from several 
different models 
By 1995, the combined results from fly and mouse genetics, 
Xenopus embryology, and fly and mammalian cell culture 
experiments had generated an outline of a Wnt signalling 
pathway (Figure 2). It became clear that Wnt signalling was 
unusual compared with the other pathways known at the 
time: those consisted mostly of successions of protein phos- 
phorylations, with protein associations based on recognition 
of phosphorylated domains. In Wnt signalling, the most 
upstream known component was a cytoplasmic protein of 
uncertain biochemical function, Dishevelled, which then was 
proposed to inhibit the abundant GSK3 protein kinase (Peifer 
et al, 1991; Siegfried et al, 1992, 1994; Noordermeer et al, 
1994). GSK3 was known to be a negative regulator of 
bcatenin/Armadillo and was found in a complex with 
bcatenin/Armadillo. together with the APC protein 
(Rubinfeld et al, 1996). The role of the GSK3 kinase activity 
as a suppressor of Wnt action was confirmed by injecting 
dominant-negative (kinase-dead) mutants of GSK3 into early 
Xenopus embryos; this maneuver produced a phenocopy of 

the effect of Wntl. duplication of the dorsal axis, that had 
been reported previously by Moon and MacMahon 
(Dominguez et al, 1995; He et al, 1995; Pierce and 
Kimelman. 1996). 

A critical next step was to determine how phosphorylation 
by GSK3 governed bcatenin. This seemed likely to occur by 
control of the level of b-catenin protein. In cells activated by 
Wnt. levels of bcatenin are commonly increased (Riggleman 
et al, 1990; Peifer et al, 1994; Van Leeuwen et al, 1994) by 
stabilizing the bcatenin protein, not by an increase in its 
synthesis. Several highly conserved Ser/Thr phosphorylation 
sites near the amino terminus of bcatenin were proposed as 
possible targets for phosphorylation by GSK3 (Peifer et ~ l ,  
1994). As shown by Rolf Kemler’s and Randall Moon’s 
groups, phosphorylated b-catenin is targeted for degrada- 
tion by the ubiquitination/proteasome pathway (Yost et al. 
1996; Aberle et al. 1997; Orford et al, 1997). with a critical 
role for F-box proteins (Jiang and Struhl. 1998). Eliminating 
one or more of the N-terminal phosphorylation sites 
stabilizes bcatenin. producing abundant protein highly 
active in Xenopus axis formation assays (Yost et al, 1996). 
As a result, there are striking parallels between the 
Wnt. Hedgehog, and NF-kB signalling pathways; in all three 
cases, regulated signalling depends on degradation of a key 
pathway component by the ubiquitination/proteasome 
pathway after phosphorylation (Jiang and StruN. 1998; 
Maniatis, 1999). 

The study of the molecular pathology of colon cancers then 
offered a remarkable example of the predictive power of 
knowledge about signalling. As mentioned earlier, inherited 
mutations in the Apc gene were known to cause the familial 
disease APC. and somatic mutations in APC were found in 
most (ca. 85%) but not in all sporadic colorectal cancers. 
Why not all? Could mutations affecting other components of 
the Wnt signalling pathway substitute for APC mutations? Or 
did other mutant signalling pathways drive those tumours? 
Paul Polakis. Bert Vogelstein, Hans Clevers and their collea- 
gues looked specifically for altered b-catenin genes in APC 
wild-type tumours. on the supposition that b-catenin protein 
could be stabilized by mutations affecting the N-terminus as 
well as by loss of APC. Indeed they found that about 5-10% 
of sporadic colon cancers had mutations, often short dele- 
tions, that removed or changed the phosphorylation sites that 
target bcatenin for degradation (Korinek et al, 1997; Morin 
et al, 1997; Rubinfeld et ~ l .  1997). Subsequently, mutations 
have also been found in another component of the 
degradation complex, Axin. in colorectal and other types of 
cancers (Satoh et al. 2000). 

This other component of the b-catenin/Armadillo/GSK3/ 
APC complex has an interesting history. Cloned by Frank 
Costantini as a mouse developmental mutant called fused 
(Zeng et al. 1997), the Axin gene encodes a protein that 
shares homology with Dishevelled, suggesting possible 
participation in the Wnt pathway. This turned out to be the 
case. Axin is now known to participate in the bcatenin 
destruction complex, together with APC and GSK3 (Behrens 
et al. 1998; lkeda et al, 1998). Using a novel cell-free system 
for studying b-catenin degradation, Marc Kirschner and 
colleagues showed that Axin is the rate-determining 
component of the complex, even though it was the most 
recently identified (Lee et al, 2003). Axin has a similar role in 
intact mammalian cells (Li et al. 2012). 

2676 The EMBO Journal VOL 31 I NO 12 I 2012 0201 2 European Molecular Biology Organization 



Tbno d d n  of Wnts o p o ~ ~ l l  puspoctiw 
R Nussa and H Varmus 

After these several elements were implicated in Wnt sig- 
nalling, two apparent and important gaps in the pathway 
.remained, one at each end of the pathway (Figure 2). On the 
upstream end, there were no proteins known to recognize 
extracellular Wnt proteins and transmit a signal to the cell’s 
interior (Wnt receptors). On the downstream end, the antici- 
pated effects on gene expression through transcriptional 
control could not be explained because b-catenin does not 
have the expected physical attributes of a transcription 
factor, and no established transcription factor was known 
to partner with it. Then, in a single year, 1996, these gaps 
were closed, generating excitement in the growing Wnt field 
(Figure 2). 

Wnt receptor proteins were known in other 
contexts before their roles in Wnt signalling 
were uncovered 
After many trial-and-error searches, one class of the elusive 
Wnt receptors was identified: the Frizzled transmembrane 
proteins. Originally found in mutant screens by Calvin 
Bridges (Bridges and Brehme, 1944), Frizzled had been 
identified in Drosophila as a gene required for planar 
polarity (Gubb and Garcia-Bellido, 1982; Vinson and Adler, 
1987), the orientation of cells in tissues. Paul Adler and 
colleagues showed Frizzled to encode a seven-pass 
transmembrane protein (Vinson et al, 1989). Genetically, at 
least, Frizzled interacted with Dishevelled, which was shown 
by Perrimon and Mahowald (1987) to be involved in 
Wingless signalling as well. While this suggested that 
Frizzled could mediate Wingless signalling, the absence of 
an embryonic segment polarity phenotype in Frizzled 
mutants indicated otherwise. 

Here serendipity stepped in. Jeremy Nathans and his 
colleagues found a Frizzled homologue among components 
of a human retinal cDNA library that had been made to 
pursue their interests in the molecular biology of vision. 
When the cDNA was used to seek homologues in a library 
of Drosophila DNA, a second Drosophila Frizzled gene (Dfz2) 
was cloned, and the Dfi2 gene displayed a striped pattern of 
gene expression in the embryo, implying that it might be 
directly involved in segment polarity. A collaboration be- 
tween the Nathans and RN laboratories revealed that the 
Wingless protein, which RN’s laboratory had solubilized at 
the time, could bind to Dfz2 and, more weakly, to Frizzled 
itself (Bhanot et al, 1996). Moreover, in cultured Drosophila 
cells that did not express Frizzled genes, transfection of an 
expression vector containing Frizzled genes conferred active 
signalling, as demonstrated by an increase in Armadillo 
(b-catenin) levels (Bhanot et al. 1996). Genetic and other 
interactions between Frizzleds and Wnts were also reported 
by the groups of Randall Moon and Robert Horvitz (Sawa 
et al, 1996; Yang-Snyder et al, 1996). 

Just like Wnts, Frizzleds form a large gene family in all 
branches of metazoan animals. Genetically, Frizzled genes 
are often redundant and display phenotypes only when 
mutated in combination with other family members 
(Ye et al, 2011). In Drosophila, this was shown for Frizzled 
and Dfi2 using dsRNA interference technology (Kennerdell 
and Carthew. 1998). (Interestingly, this occurred in the same 
year that this revolutionizing method to inhibit gene 

expression was first reported by Andy Fire and Craig Mello; 
Fire et al, 1998). By using loss-of-function mutations in 
Frizzled and D U ,  Eric Wieschaus. Gary Struhl, Ken 
Cadigan. and Krishna Bhat uncovered a segment polarity 
phenotype indistinguishable from phenotypes characteristic 
of the other genes in that class-but only as double mutants, 
explaining why these receptor genes were not in the original 
Niisslein-Volhard/Wieschaus collection (Bhat, 1998; Bhanot 
et al, 1999; Chen and Struhl. 1999; Muller et al, 1999). 
Despite the evidence for redundancy, Frizzled proteins have 
different affinities for different Wnts (Rulifson et al, 2000), 
indicating a high degree of specificity in their interactions. 
However, persistent experimental problems with the 
biochemistry of Wnt proteins have hampered systematic 
surveys of the interactions. 

To complement the Wnt receptor story, the Drosophila gene 
Arrow, one of the last segment polarity genes to be identified, 
was cloned by Stephen DiNardo and colleagues a few years 
later. Arrow proved to be a member of the Low density 
lipoprotein receptor-Related Protein (LRP) family of receptors 
(Wehrli et al, 2000). Based on additional genetic data from 
Bill Skames, who made LRP mouse mutants, and 
biochemical experiments from Xi He’s laboratory, a model 
emerged in which Arrow/LRP is a co-receptor for Wnts, 
physically adjacent to Frizzleds in the cell membrane 
(Pinson et al, 2000; Tamai et al, 2000). When signalling to 
downstream components, however, Arrow/LRP may be the 
key player. Its cytoplasmic tail is phosphorylated as a 
consequence of Wnt binding and interacts directly with 
GSK3 and Axin (Mao et al. 2001b; Tamai et al. 2004; 
Davidson et al, 2005; Zeng et al. 2005) and Frizzled’s 
intracellular role in signalling may be limited to binding 
Dishevelled (Macdonald et al, 2009). Arrow/LRP is also the 
target of several Wnt antagonists including the protein 
Dickkopf, isolated by Christof Niehrs (Glinka et al. 1998; 
Bafico et al. 2001; Mao et al, 2001a; Semenov et al, 2001). The 
Dickkopf-Wnt antagonism is conserved across many animal 
phyla (Guder et al. 2006), illustrating the ancient nature of 
Wnt signalling in animal development and evolution. 

Eddy De Robertis, Jeremy Nathans. Jeff Rubin. and their 
co-workers have uncovered several other Wnt antagonists, in 
addition to Dickkopf. These are secreted molecules usually 
consisting of Wnt receptor domains that bind to Wnt itself. 
Some of these molecules have names such as FRP or FRZB. 
reflecting their similarity to the Frizzled receptor (Finch et al, 
1997; Leyns et al. 1997; Rattner et al, 1997). Others, such as 
the WIF protein (Hsieh et al, 1999), are unrelated to Frizzled. 
These proteins are likely involved in fine-tuning the 
concentration of active Wnt outside cells. 

The tandem arrays of Frizzled and LRP are not the 
only Wnt receptors, as there are various members of the 
trans-membrane tyrosine kinase family that serve to receive 
Wnts; these include the ROR (Oishi et al, 2003; Mikels 
and Nusse. 2006) and Derailed/RYK (Yoshikawa et al. 
2003) proteins. Interestingly. these two classes of molecules 
have different Wnt binding modules: the RORs contain a 
CRD domain similar to the Frizzled CRD, while Derailed/RYK 
is related to the WIF protein mentioned above (Patthy, 
2000). Wnt interactions with these receptors often lead to 
effects in cells that are unrelated to b-catenin, possibly 
mediating ‘non-canonical Wnt signalling’ (van Amerongen 
et al, 2008). 

0201 2 European Molecular Biology Organization The EMBO Journal VOL 31 I NO 12 I 2012 2677 



Another unexpected but previously well- 
known protein, TCF/LEFl, explains the role 
of bcatenin in the Wnt signalling pathway 
The TCF/Lefl protein proved to be the long-sought Wnt 
transcription factor in the nucleus Discovery of the critical 
interaction between this protein and b-catenin highlights one 
of the themes of this essay: historically, the map of Wnt 
signalling was assembled by merging evidence from several 
different cell types and organisms. TCF/Lefl. an HMG box- 
containing transcription factor, was first implicated in im- 
mune T-cell gene expression (navis et al. 1991; van de 
Wetering et al, 1991; Waterman et al, 1991) without any 
evident link to Wnt signalling. Working separately on 
C. elegans, Jim Priess and colleagues identified an HMG- 
box family member, POP1, involved in mesoderm 
specification in the worm embryo (Lin et al, 1995), initially 
also without connections to the Wnt pathway. 

Soon thereafter, a surprising discovery was reported: TCF/ 
Lefl could interact with b-catenin, considered at that time to 
be an adhesion molecule. Hans Clevers extended his earlier 
work on TCF/Lefl to make this finding (Molenaar et al, 
1996), while Walter Birchmeier (Behrens et al, 1996) and 
Rolf Kemler (Huber et al, 1996) started from b-catenin to 
establish binding to TCF/Lefl . Using Drosophila, Mariann 
Bienz and Rudi Grosschedl (Riese et al, 1997) found that 
Wingless signalling was mediated by TCF/Lefl while Konrad 
Basler used mutagenesis screens to find a gene called 
Pangolin (BruMer et al, 1997), the single TCF/Lefl 
homologue in Drosophila. Around the same time, continued 
investigations into C. elegans embryogenesis by Jim Priess, 
Craig Mello, and Bruce Bowerman unveiled that the set of 
MOM genes implicated in lineage choices were members of the 
Wnt pathway, including Wnt itself (MOM2), Porcupine 
(MOMl), and Frizzled (MOMS). All of these M O M  converged 
on POP1 as a transcription factor and WRMl as a b-catenin- 
related gene (Rocheleau et al, 1997, 1999; Thorpe et al, 1997). 

In many contexts, TCF/Lefl can switch between two states. 
When bound to Groucho, it acts as a repressor of target 
genes; but when Groucho is displaced by b-catenin, the same 
target genes are transcriptionally activated (Cavallo et al, 
1998; Daniels and Weis, 2005). Crystallographic studies by 
Bill Weis and Wenqing Xu revealed the molecular details of 
the binding between TCF, b-catenin. and other proteins. The 
structure of b-catenin contains a groove made by the 
‘Armadillo’ repeats in the protein, explaining how b-catenin 
can interact with several different partners, including TCF/ 
Lefl, E-cadherin, and APC (Huber et al, 1997; Graham et al, 
2000). 

These discoveries about the interaction between b-catenin 
and TCF/Lefl were in more than one respect very significant, 
as they not only closed the gaps in the Wnt pathway but also 
provided unparalleled tools for experiments. TCF/Lefl recog- 
nizes a well-defined DNA binding site. By multimerizing this 
sequence, Hans Clevers and colleagues generated very con- 
venient luciferase-based Wnt reporters, called Top-FLASH 
and now widely used in the Wnt field to measure signalling 
(Korinek et al, 1997). There are now numerous genes known 
to have TCF/Lefl binding sites in their promoters and hence 
likely to be transcriptional targets for the Wnt signalling 
pathway in at least some cell types; among these genes are 
several implicated in cancer, such as c-myc (He et al, 1998). 

At last, the purification of active Wnt 
protein 
As we have recounted, by the end of the 20th century we had 
a blueprint of the Wnt signalling pathway and a readout for 
the pathway, both of which were missing in the two previous 
decades in which Wnt genes were intensively studied 
(Figure 2). Still lacking, however, was the purification of 
any active Wnt protein, a problem that we and many other 
researchers had been working on since the initial cloning of 
Wntl. Why were Wnt proteins so much more refractory to 
biochemical purification than many other secretory proteins? 
Were they modified in a fashion that rendered them insoluble 
or highly adherent? 

It was known from Norbert Perrimon’s work and 
Drosophila genetics that export likely required a specialized 
protein encoded by Porcupine. Evidence that Porcupine en- 
coded a putative acyltransferase (Kadowaki et al, 1996; 
HOfmaM, 2000) suggested that detergents might be needed 
to keep lipid-modified Wnt proteins soluble during extraction 
from cells. With the help of assays that judged Wnt activity in 
extracts based on increased b-catenin levels in cells, Karl 
Willert in RN’s laboratory finally managed to break through 
the purification barriers (Willert et al, 2003). (Coincidentally, 
Willert had obtained his PhD working with HV at UCSF.) 
Wnts were found to be indeed covalently attached to lipids, 
explaining to some extent their resistance to biochemical 
manipulation (Willert et al, 2003). It is now recognized that 
secretion of Wnt proteins is a complex process, involving a 
dedicated enzyme (Porcupine; Kadowaki et al, 1996) and 
secretory proteins that are specific for Wnt signals. Among 
these is the multiple-pass transmembrane protein Wntless/ 
Evi, identified by the groups of Konrad Basler and Michael 
Boutros, once again using the Drosophila genetic resources 
that have over the years been so instrumental in 
understanding the details of Wnt signalling (Banziger et al, 
2006; Bartscherer et al. 2006; Port and Basler, 2010). 

A growing and very active field of Wnt 
signalling 
The availability of Wnt proteins and more quantitative 
reporters (e.g., TopFlash) as reliable end points for signalling 
have simplified the study of Wnt signalling in cell culture, 
attracting many new investigators. The generation of Wnt 
reporter mice, initially Top-gal animals from Elaine Fuchs 
(DasGupta and Fuchs, 1999) and later animals with 
transgenic markers driven by Axin 2 promoters (Lustig 
et al, 2002; van Amerongen et al, 2012). provided yet more 
experimental opportunities. One can now trace Wnt- 
responding cells in any tissue of the mouse, examine the 
origin of these cells, and follow their fate in normal settings 
or after injury (Barker et al, 2007,2010; van Amerongen et al, 
2012). These new experimental tools have led to a rapidly 
growing list of Wnt signalling components, built on the core 
pathway. 

Wnt signalling is clearly complicated and unusual when 
compared with other growth factor cascades. At various 
nodes in the Wnt pathway, there are links to cyto-architec- 
tural proteins, such as those involved in adhesion and cell 
polarity (Nelson and Nusse, 2004). The Wnt pathway is 
clearly important for cell fate changes and the control of 
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Figure 3 Participants of the 1991 Wnt meeting at UCSF. From left RN, Andrew McMahon. Are& Sidow. Vladimir Pecenka. John Mason, Lee 
Fradkin, HV. Henk Roelink. Jasprlna Nmrdermw, Supriya Shivakumar. Frank van Leeuwen, Cindy Hanyman, Jean-Paul Vincent, Jackie 
Papbff. two unidentified people. lbny Brown, a third unidentified person, Helen Kwan. lbp row, from left Karl Willert. Neil Parkin, and Jan 
Kitajewski. 

gene expression, but Wnt signalling can also influence how 
cells are shaped and polarized and how they divide (Veeman 
et al. 2003). Hitoshi Sawa, Bruce Bowerman. and Craig Mello 
have provided conclusive evidence for a major role for Wnt 
signalling in asymmetric cell division in C. elegans and the 
annelid worm PlatynereiS dumerilii (Rocheleau et al. 1999; 
Schneider and Bowerman, 2007; Sugioka et d, 2011). Given 
the multiple roles of the Wnt pathway in development, these 
cell biological phenotypes are perhaps not surprising and 
have opened fertile ground for further research. 

Sociology of the field of Wnt signalling: 
annual meetings, sharing information, and 
a dedicated website 
A history of Wnt signalling would be incomplete without a 
few comments on the sociology of the field, which, we 
believe, has several unusual aspects. Those features have 
contributed to one of the overarching characteristics of this 
field: the propensity of investigators working on Wnt genes 
and Wnt signalling to identify themselves, at least in part and 
often primarily, as students of Wnts, regardless of whether 
they are cancer biologists, developmental biologists, or bio- 
chemists. First and foremost among the unifying activities are 
the annual (or sometimes bi-annual) Wnt meetings. These 
are organized by working scientists in the field, not by 
institutions or meetings specialists, in a very informal, low- 
cost, but effective way. No one, except a keynote speaker, 
receives an invitation accompanied by a promise of reimbur- 
sements; all others are expected to get there, find food and 
lodging, and arrange to cover expenses. Nevertheless, the 
meetings are well attended by many principal investigators, 
not by just trainees. The meetings started in on a small scale 
in 1990 as regular gatherings of our two nearby laboratories, 
after RN had moved to Stanford from Amsterdam. We then 

asked members of other laboratories to attend as well; 
Figure 3 shows most of the attendees at the 1991 meeting at 
UCSF. After HV moved to the NIH in 1993, we continued the 
gatherings; attendance soon grew to B 300 people, as our 
own trainees started their own laboratories to work on Wnt 
genes, and others joined the field. Many of the discoveries we 
have presented in this essay were first made public during 
Wnt meetings. including the identification of Frizzleds as 
Wnt receptors and lCFs/Lefs as transcription factors in Wnt 
signalling, both at the 1996 meeting at Stanford (Figure 4); 
and the Arrow/LRP findings were first reported at another 
Wnt meeting. at Stanford in 1999. The meetings have covered 
an increasingly wide range of subjects and biological systems 
related to Wnt signalling, and their popularity attests to the 
loyalty of Wnt researchers to the subject matter in its many 
manifestations. 

Wnt meetings have also helped to establish a culture of 
sharing information and reagents. An example of the con- 
genial relationship was the unanimous and friction-free ac- 
ceptance of the new nomenclature (from int to Wnt) when it 
was felt that this would benefit the field and the general 
comprehension of its work. In parallel to the informal Wnt 
meetings in the Unites States, there have been numerous 
other Wnt conferences throughout the world, perhaps a bit 
more official but still in the same spirit of open exchange and 
camaraderie. 

In 1996, around the time that the Internet became easier to 
navigate with browsers such as Netscape, RN started and 
still maintains a website, the Wnt homepage (http://wnt. 
stanford.edu). The various pages list genes and signalling 
diagrams. in many cases linked to other genome databases. 
But the site is also used to announce meetings and to supply 
information on Wnt technology and reagents, and has be- 
come a popular resource for the world-wide Wnt community 
and for others seeking information about Wnt genes, as 
appreciation of their importance has expanded. 
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Figure 4 Celebration of discovery of Frizzleds as Wnt receptors at the 1996 Wnt meeting at Stanford. From left: Jeremy Nathans, Matthew 
Scott, RN. and HV. 

Contemporary Wnt signalling systems, 
including stem cells, and an outlook 
It is now clear that Wnt signalling is widely implicated in 
diverse biological processes. For instance, the large majority 
of developmental decisions that cells make during embryo- 
genesis and thereafter appears to be coordinated, in large 
part, by Wnts. Scientists are beginning to understand how 
organs grow and regenerate after injury, and it is clear that 
Wnt signalling has major functions in these processes as well. 
A particularly prominent example of the centrality of Wnt 
signalling is the recently recognized role of Wnts in main- 
taining stem cells. The choices that stem cells make to self- 
renew or to differentiate are very much dependent on ex- 
trinsic signalling factors coming from a niche. Wnt signals are 
widely active as niche factors, as illustrated by the identifica- 
tion of the LGR5 receptor as a Wnt target gene in many 
different kinds of adult stem cells (Barker et d, 2007) and the 
requirement for TCF4 to maintain stem cells in the intestine 
(Korinek et al, 1998). 

The discoveries related to stem cells have also illuminated 
the connections between Wnt and cancer: in a simple but 
likely correct view, stem cells are normally dependent on 
external Wnts for self-renewal, but when a negative Wnt 
regulator such as APC is mutated in stem cells, cells with 
markers of early lineage development proliferate in an un- 
controlled manner, producing cancers of the colon and other 
organs. In the mammary gland, where we first identified 
Wntl as an oncogene, stem cells are also Wnt dependent 
(Shackleton et al, 2006; Zeng and Nusse, 2010; van 
Amerongen et al, 2012). and Wntl-induced tumours bear 
hallmarks of normal mammary stem cells (Li et d, 2003). 

Wnt signalling mutations have also been implicated in a 
growing list of degenerative diseases. Important among these 
are bone density abnormalities with dysfunctional LRP re- 
ceptors (Gong ef al, 2001) and retinal degeneration with 
Frizzled mutations (Robitaille et d,  2002). Some metabolic 
disorders, including diabetes mellitus, have been associated 
with alterations in Wnt pathway genes (Grant et al, 2006). 

It has been gratifying to witness growth of the Wnt field, 
from the finding of a single cancer gene in a mouse model to a 

rich system branching out to influence so many aspects of 
metazoan biology and human disease. While outsiders may 
be intimidated by the current size of the field and the 
biochemical complexities of Wnt signalling, we suggest that 
there are still many fundamental aspects of Wnt-related 
biology to be discovered, understood, and exploited. 
Increasingly, structures of Wnt signalling components are 
being elucidated, often in complexes with their partners 
(DaM et d, 2001; Schwarz-Romond et al, 2007; Ahn et al. 
2011; Chen et al, 2011; Cheng et d. 2011); but important 
aspects of the pathway’s molecular machinery and 
biochemical regulators remain incompletely defined. 

Progress in the Wnt field is much more rapid today than it 
was in the early history of this field, thanks to more sophis- 
ticated tools: Wnt-specific assays and materials and more 
general methods in structural biology, genetics, and cell 
biology. For instance, recognition of the role of Wnt signalling 
in stemcell regulation has already led to the use of Wnt 
proteins or Wnt agonists to expand stem cells in culture (Sato 
et al, 2010; Zeng and Nusse, 2010; ten Berge et d. 2011). 
On the other hand, despite the evidence for widespread 
involvement of Wnt signaling in human carcinogenesis, the 
kinds of targeted cancer therapies that are now being 
developed against components of several other signaling 
pathways have not yet been produced to interfere with the 
Wnt pathway. Among the most significant challenges in 
future research in the Wnt field is the identification of 
effective and specific Wnt pathway inhibitors for use in 
cancer and other diseases. We expect that further 
understanding of the intricacies and varieties of Wnt 
signaling will help to achieve these important goals. 
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